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Abstract
Species with wide-range distributions usually display high genetic variation. This 
variation can be partly explained by historical lineages that were temporally isolated 
from each other and are back into secondary reproductive contact, and partly by 
local adaptations. The smooth newt (Lissotriton vulgaris) is one of the most widely 
distributed amphibians species across Eurasia and forms a species complex with a par-
tially overlapping distribution and morphology. In the present study, we explored the 
population genomic structure of smooth newt lineages in the Carpathian Basin (CB) 
relying on single-nucleotide polymorphisms. Our dataset included new and previously 
published data to study the secondary contact zone between lineages in the CB and 
also tested for the barrier effect of rivers to gene flow between these lineages. We 
confirmed the presence of the South L. v. vulgaris Lineage distributed in Transdanubia 
and we provided new distribution records of L. v. ampelensis inhabiting the eastern ter-
ritories of the CB. High genetic diversity of smooth newts was observed, especially in 
the North Hungarian Mountains and at the interfluves of the main rivers in the South 
with four distinct lineages of L. v. vulgaris and one lineage of L. v. ampelensis showing a 
low level of admixture with the spatially closest L. v. vulgaris lineage. Moreover, admix-
ture detected at the interfluve of the main rivers (i.e. Danube and Tisza) suggested a 
secondary contact zone in the area. Finally, we found that the river Danube has a very 
weak effect on population divergence, while the river Tisza is a geographical barrier 
limiting gene flow between smooth newt lineages. As the range boundaries of L. v. vul-
garis and L. v. ampelensis in the CB coincide with the river Tisza, our study underpins 
the influence of rivers in lineage diversification.
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1  |  INTRODUC TION

Generally, species distributions are relatively close to equilibrium 
with the present climate; however, animals with varying dispersal 
abilities suggests some degree of discrepancy from that equilib-
rium (Araújo & Pearson, 2005). In Europe, the current distributions 
of the herpetofauna are determined more by their proximity to the 
three major glacial refugial areas, that is, the Iberian, Appenin and 
Balkan peninsulas (Hewitt,  2004; Taberlet et al.,  1998), than by 
present climate gradients (Araújo & Pearson, 2005). Europe's her-
petofauna is considered well-explored (Speybroeck et al., 2020). 
Nevertheless, with the advance of molecular research, coupled 
with the application of genomic technologies, substantial cryp-
tic diversity has been unveiled—particularly evident in the three 
above mentioned regions (Velo-Antón et al., 2023). Multiple lines 
of fossil evidence suggested that the three major refugial areas 
must have been complemented with several extra-Mediterranean 
refugia, for example, in Central Europe including the Carpathian 
Basin (CB) and the Dordogne in south-western France 
(Sommer & Benecke,  2005; Sommer & Nadachowski,  2006). 
Furthermore, increasing evidence confirms that the European 
southern and eastern refugia were supplemented by multiple 
cryptic refugia in northern Europe during the Late Pleistocene 
(Rowe et al., 2006; Stewart & Lister, 2001; Tzedakis et al., 2013). 
The discovery of these cryptic refugia entailed growing interest 
and extensive research of Central European fauna leading to the 
detection of unexpected cryptic diversity, particularly along the 
southern borders with the Balkan Peninsula (Varga, 2019).

The CB is a complex transitional zoogeographic and climatic area 
between the Carpathian Mountains and the western Alpine do-
main. Due to its unique geographical characteristics, microclimate 
and hydrological conditions, the CB provided extra-Mediterranean 
glacial refugia for many temperate species during the cold periods 
of the last glaciation (Schmitt, 2007; Schmitt & Varga, 2012; Som-
mer & Nadachowski, 2006; Varga, 2010; Vörös et al., 2021). In the 
case of amphibians, cryptic diversity and the evidence of Central 
European refugia were supported by inferences based on genetic 
data from Bombina toads (Fijarczyk et al., 2011; Hofman et al., 2007; 
Spolsky et al., 2006; Vörös et al., 2006), the moor frog, Rana arvalis 
(Babik et al., 2004), the Triturus newts (Vörös et al., 2016; Wielstra 
et al., 2013), the Carpathian newt, Lissotriton montandoni (Wielstra 
et al., 2017), and alpine newts (Robbemont et al., 2023).

The smooth newt, L. vulgaris, sensu lato has a parapatric distri-
bution with a large range across Eurasia (Arntzen, Kuzmin, Beebee, 
et al.,  2009). At the intraspecific level, L. vulgaris is differentiated 
into at least seven subspecies and forms a speciation continuum of 
evolutionary lineages with partially overlapping geographical ranges 
and morphology (Raxworthy, 1990). The northern part of this distri-
bution is inhabited by the wide-ranging L. v. vulgaris subspecies which 
was recently separated, using multilocus data, into North L. v. vulgaris 
Lineage and South L. v. vulgaris Lineage (Pabijan et al.,  2017). The 
morphologically well-characterized L. v. graecus inhabits the south-
ern Balkan Peninsula, L. v. kossingwi is restricted to a small area along 

the Black Sea coast east of Istanbul, L. v. schmidtlerorum dominating 
western Anatolia and the coast of the Marmara Sea, while L. v. lantzi 
is limited to the northern Caucasus and parts of Transcaucasia. 
Recently, the aforementioned four southern subspecies were ele-
vated up to the species level, that is, L. graecus, L. kosswigi, L. lantzi 
and L. schmidtleri according to Pabijan et al. (2017). Furthermore, the 
Apennine Peninsula and adjacent territories are inhabited by L. v. me-
ridionalis, and ultimately L. v. ampelensis has a broader distribution 
in Transylvania reaching the Carpathians and the Harghita Upland 
on the east but its presence has never been confirmed in the east-
ern part of the CB. For the visual presentation of the distribution of 
the morphological species and subspecies see Figure  1 in Pabijan 
et al.  (2017). The parapatric distribution of Central European lin-
eages supports a relatively high level of gene flow among them. The 
genetic cluster of L. v. ampelensis contains two distinct morphological 
forms and extensive genetic exchange with the North L. v. vulgaris 
Lineage and L. montandoni was confirmed (Pabijan et al., 2017; Ziel-
iński et al., 2016, 2019). Gene flow between the South L. v. vulgaris 
Lineage and the neighbouring geographical lineage of L. v. ampelen-
sis, and between the North L. v. vulgaris Lineage and L. v. meridionalis 
was also detected (Pabijan et al., 2017). In this study, we focus on the 
fine-scale distribution and population structure of two evolution-
ary lineages, the South L. v. vulgaris Lineage and the L. v. ampelensis 
of smooth newts in the CB, where we suspect a secondary contact 
zone between them (Pabijan et al., 2017).

Landscape features are crucial determinants of population struc-
turing because they may shape the dispersal of species, influencing 
gene flow leading to a divergence between their populations, and 
ultimately driving speciation events (Manel et al., 2003). Rivers can 
act as boundaries for terrestrial (Figueiredo-Vázquez et al.,  2021; 
Moraes et al., 2016; Vörös et al., 2006; Wang et al., 2015) and semi-
aquatic amphibians (Figueiredo-Vázquez et al., 2021), and as disper-
sal corridors for fully aquatic species (Burbrink et al., 1998; Vörös 
et al., 2016).

The Balkan Peninsula was proposed as the primary source of ge-
netic diversity of the L. vulgaris complex and served as a refugium 
for consequent recolonization of central and northern Europe during 
the last glacial period (Babik et al., 2005; Pabijan et al., 2015). None-
theless, the existence of multiple, spatially distinct refugia was sug-
gested north and east of the Balkans, which may have conserved 
some fraction of the Pleistocene genetic diversity of smooth newts 
(Babik et al., 2005). For instance, the distribution of mitochondrial 
DNA (mtDNA) clades in L. vulgaris and L. montandoni, and gene flow 
between the South L. v. vulgaris Lineage and L. kosswigi suggests 
that the CB and Turkey were probably among these refugia (Babik 
et al., 2005; Nadachowska & Babik, 2009). It was presumed that the 
secondary contact between the evolutionary lineages of smooth 
newts is situated in the eastern part of the CB (Pabijan et al., 2017). 
Therefore, we use population genomics to (i) investigate the current 
distribution and population structure of L. vulgaris lineages in the CB, 
(ii) explore the putative contact zone between the South L. v. vulgaris 
Lineage and L. v. ampelensis in the eastern part of CB and (iii) deter-
mine the effect of the geographical boundaries (i.e. the river Danube 
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and the river Tisza) potentially shaping the population structure of 
smooth newts in the study area.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection, DNA extraction and SNP 
library preparation

In total, 98 L. vulgaris tail clips from 17 localities (each locality repre-
sents one distinct population) were collected in Hungary during the 
spring of 2020 (Table S1, Figure 1). Additionally, 41 DNA sequences 
from 41 localities (each locality represents a distinct population) 
previously published by Wielstra et al.  (2018) complemented our 
dataset to get a fine-scale coverage of the contact zone between 
the South L. v. vulgaris Lineage and L. v. ampelensis in the CB (Table S1, 
Figure 1). In the following, we use the term population to refer both 
individuals (in case of additional samples) and localities (in case of 
fresh sampling) because in this case, they are identical. DNA from 

tail clip tissues was extracted with the Wizard Genomic DNA Puri-
fication Kit according to the manufacturer's instructions (Promega). 
Fragments of 1233 genes were amplified using Molecular Inversion 
Probes (MIPs) following the protocol from Niedzicka et al.  (2016). 
MIPs are single-stranded DNA molecules containing on their ends 
sequences complementary to two regions flanking the target (i.e. the 
arms), which is around 100 bp. The description of the MIP is detailed 
in Zieliński et al. (2019). MIPs were pooled equimolarly and hybrid-
ized to the genomic DNA. Following the gap-filling and the ligation, 
resulting circular DNA molecules were used as template for the PCR. 
After sequencing in an Illumina MiSeq platform and considering that 
the same laboratory protocol was used to develop both datasets 
(i.e. our dataset and data of Wielstra et al.,  2018), both sequenc-
ing data were joint. Then, all fragments were mapped to references 
(Zieliński et al., 2019) and the arms were trimmed. Single-nucleotide 
polymorphism (SNP) calling was performed with UnifiedGenotyper 
of GATK 3.6 (DePristo et al., 2011; McKenna et al., 2010). Individual 
genotypes with sequencing depth ≤8 and genotype quality below 20 
were treated as missing. Only biallelic SNPs with <50% of missing 

F I G U R E  1 Sampling of Lissotriton vulgaris vulgaris and L. v. ampelensis in the Carpathian Basin. White dots represent localities sampled for 
this study, while black dots represent localities added from Wielstra et al. (2018). Serbian samples originated from the Institute for Biological 
Research ‘Siniša Stanković’ University of Belgrade (Džukić et al., 2015). Locality IDs correspond with Population IDs in Table S1. Sample size 
is indicated in Table S1. The top left insert shows the location of the study area within Europe (black frame) and the distribution of L. vulgaris 
in Europe (dark grey shading; modified from AmphibiaWeb, 2021). Drawings of L. v. vulgaris male and female, courtesy of Márton Zsoldos.
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data and minor allele frequency ≥2% were used in the downstream 
analyses. Furthermore, three samples (LvP72, LvP06 and LvP98) 
were discarded from the analysis due to an excess of missing data, 
thus further analyses were conducted with 136 individuals from 58 
populations in total.

2.2  |  Population structure

Principal component analysis (PCA) was performed in Plink 1.9 
(Chang et al., 2015) to investigate the structure of the genetic vari-
ation of the data. In addition, ADMIXTURE software (Alexander 
et al., 2009) was applied to estimate the genetic ancestry of each 
sample. ADMIXTURE's cross-validation procedure (Alexander & 
Lange, 2011) was performed to distinguish between the number of 
ancestral populations in the dataset. This method also provided the 
estimates of pairwise Fst between ancestral populations. The mean 
value of the genetic ancestry per population was used to construct 
pie charts. All maps were created in QGIS 3.16 (QGIS,  2021). Ex-
pected heterozygosity (HE) was computed in Arlequin 3.5 (Excoffier 
& Lischer, 2010). We visualized the geographical distribution of HE 
using heatmap render implemented in QGIS. We performed this 
analysis both with the whole dataset and with a single SNP per ran-
dom locus and the outcome was similar (99% correlation between 
the two analyses), therefore we kept a heatmap showing the distri-
bution of HE for the whole dataset. The layer with water bodies was 
downloaded from the European Environment Agency (www.eea.
europa.eu/data-and-maps/data/wise-large​-river​s-and-large​-lakes). 
Finally, an unrooted phylogenetic tree was reconstructed based on 
the genetic distance matrix (Fst) and neighbour-joining method im-
plemented in MEGA software (Tamura et al., 2021) to visualize the 
relationships among lineages.

2.3  |  Testing the effect of rivers as barriers to 
gene flow

To explore whether the data showed signs of a barrier to gene flow 
posed by the Danube and Tisza rivers, we first visualized the rela-
tionship between Fst and geographical distance in relation to the side 
of the Danube and the Tisza, by using pairwise geographical and Fst 
distances. We then coloured the pairwise comparisons between 
populations on the same or different sides of the Danube and Tisza 
(Figure 6), following Bradburd et al. (2013).

To further understand the effect of the rivers on genetic dis-
tance between L. vulgaris populations, we performed a Bayesian Es-
timation of Differentiation in Alleles by Spatial Structure and Local 
Ecology (i.e. BEDASSLE) analysis with the ‘BEDASSLE’ package in R 
(Bradburd et al., 2013). BEDASSLE can be used to fit effect sizes for 
each environmental predictor (i.e. the Danube and Tisza rivers) and 
geographical distance, based on the matrices of dissimilarity for ge-
ography and ecology, genetic data (in our case a random selection of 
one SNP per MIP fragment to ensure independence between SNPs) 

and sample sizes. The BEDASSLE model assumes that populations 
are at migration–drift equilibrium such that the allele presence/ab-
sence can be modelled based on the geographical distance between 
populations (Bradburd et al., 2013). Geographical distance was nor-
malized. We ran BEDASSLE with the beta-binomial mode, which pre-
vents outlier populations from having an inappropriate influence on 
the effect size estimates of the predictor variables, adapting a script 
available from GitHub (Grieneisen et al., 2019). The final model was 
run with two million generations, samples recorded every 1000 gen-
erations, and a 200 sample burn-in was removed (based on initial 
trace plots). Trace plots without burn-in (Figure S2A) were assessed 
for appropriate mixing of the model. We ran 1000 posterior predic-
tive samples to determine that the model was a good fit for the data 
(Figure S2B).

3  |  RESULTS

After filtering, a total of 4124 SNPs from 1065 genes were used for 
the analysis. The mean percentage of missing data was 6.6% and the 
average coverage depth was around 63 reads per sample per locality.

3.1  |  Population structure

The distribution of the samples along the principal component (PC) 
1 (explaining 26% of the variance), 2 (8%) and 3 (6%) is presented 
in Figure  2. ADMIXTURE's cross-validation procedure supported 
four ancestral clusters (CV error = 0.352); however, the difference 
from two to five ancestral clusters was minimal (0.352–0.368). The 
two clusters found corresponded to the South L. v. vulgaris Linage 
and L. v. ampelensis. With increasing the number of ancestral clus-
ters, L. v. ampelensis remained stable while the South L. v. vulgaris 
Lineage were divided into two to four (Lvv1–4) additional clusters 
(Figure 3a–c). This was also supported by the distribution of sam-
ples within PC1–PC3 (Figure 2). While PC1 showed the difference 
between lineages, PC3 demonstrated the differences among the 
South L. v. vulgaris clusters (Figure  2). An admixture between the 
South L. v. vulgaris Lineage and L. v. ampelensis and also clusters 
found among the South L. v. vulgaris Lineage was detected (Figures 2 
and 3b,c).

The Fst statistics showed high differentiation (0.266) between 
L. v. ampelensis and the South L. v. vulgaris Lineage, and also between 
L. v. ampelensis and all the four South L. v. vulgaris Lineage (Lvv1–4) 
clusters (0.266–0.31). Lower differentiation was found among the 
South L. v. vulgaris Lineage clusters (0.103–0.157), cluster Lvv1 being 
the most differentiated from the others (0.133–0.157; see Table 1). 
The HE ranged from 0.04 (Locality 21, Lva) to 0.17 (Locality 35, Lva) 
with a mean of 0.13 (SD = 0.02) and median of 0.14 (Figure 4, Fig-
ure S1). Lowest HE in Locality 21 was most probably due to the high 
number of missing genotypes (52%) in this sample. The differences 
between populations in HE were low (Figure  S1). However, there 
was a clear geographical pattern of its distribution as evidenced by 
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the heat map (Figure 4). The genetic distance between the four clus-
ters of the South L. v. vulgaris Lineage shows that cluster Lvv1 might 
represent the most distantly related population within the lineage 
and that clusters Lvv2, Lvv3 and Lvv4 might have differentiated ap-
proximately at the same time, being now separated by rivers and 
lakes (Figure 5).

3.2  |  Testing the effect of rivers (i.e. the 
Danube and the Tisza) as barriers to gene flow

Overall, the pairwise Fst in relation to the geographical distance of 
populations on the same side of the river Danube is comparable to 
the pairwise Fst in relation to the geographical distance of popula-
tions on the opposite sides of the river Danube (Figure 6a). However, 
it seems that the geographical distance in combination with being 
on the opposite sides of the river Danube results in relatively-high 
pairwise Fst (there are more turquoise dots on the right top hand of 
the plot than pink dots; Figure 6a). This effect appears to be stronger 
for the river Tisza (Figure 6b), as populations on the same side of the 
river Tisza (pink) have relatively-low Fst, while there are also popula-
tions on the same side of the river Tisza which have high pairwise 
Fst, comparable to populations on the opposite sides of the river (tur-
quoise) (Figure 6b).

The results of the BEDASSLE analysis show that the river Dan-
ube has a very weak effect on population divergence, while the river 
Tisza has a significant effect on population divergence. According to 
the model results, being on the opposite sides of the river Tisza is 
equivalent to being at a ~3000 km distance for L. vulgaris populations, 

while the median geographical distance between populations in our 
dataset is 279 km (Table 2).

4  |  DISCUSSION

4.1  |  Distribution and population structure of 
smooth newt lineages in the Carpathian Basin

Smooth newts are one of the most common urodelans in low- and 
high lands of the forest zone of the temperate belt (Arntzen, Kuzmin, 
Beebee, et al., 2009; Wielstra et al., 2018). They inhabit a wide vari-
ety of freshwater wetland habitats where permanent or temporary 
standing water is available for breeding (Lõhmus & Linnamägi, 2012; 
Skorinov et al., 2008). In the present study, we explored the popula-
tion structure of smooth newts inhabiting the CB and investigated 
the effect of large rivers (Danube and Tisza) in the diversification of 
lineages.

Similar to Wielstra et al. (2018), we detected the South L. v. vul-
garis Lineage distributed in Transdanubia and between the rivers 
Danube and Tisza, while newly confirming the presence of L. v. am-
pelensis inhabiting the eastern part of the CB. Along the edge of the 
Carpathian Mountains from Romania to Slovakia, the distribution 
of L. v. ampelensis overlaps with the closely related L. montandoni, 
and their hybridization leads to the replacement of the original 
mtDNA of L. montandoni by introgressed mtDNA of L. vulgaris lin-
eages (Babik et al., 2005; Zieliński et al., 2013). Furthermore, exten-
sive gene flow between L. v. ampelensis and the North L. v. vulgaris 
Lineage and L. montandoni was confirmed (Pabijan et al.,  2017; 

F I G U R E  2 Scatterplot based on PCA with pie charts showing the admixture in each individual. The left plot is PC1 versus PC2, while the 
right plot is PC1 versus PC3. Lva, Lissotriton vulgaris ampelensis; Lvv1–Lvv4, L. v. vulgaris cluster 1–4.

 20457758, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10478 by C

ochrane H
ungary, W

iley O
nline L

ibrary on [31/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 12  |     HERCZEG et al.

F I G U R E  3 ADMIXTURE's cross-validation results for K = 2 (a), K = 4 (b) and K = 5 (c). Each colour represents one cluster. The size of the 
pie charts are corresponding to the sample size of each population. Lva, Lissotriton vulgaris ampelensis; Lvv1–Lvv4, L. v. vulgaris cluster 1–4. 
Lineages and colours correspond with Figure 2.
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Zieliński et al., 2016). We detected admixture between L. v. ampel-
ensis and the South L. v. vulgaris Lineage. This observation on the 
one hand underlines the complex genetic structure of populations 
in Central Europe, and on the other hand, raises the possibility of 
gene flow between spatially distinct lineages.

Admixture analysis identified two to five distinct genetic clus-
ters of L. vulgaris in the study area. First, if we consider the two 
clusters scenario, the genetic structure of populations shows a clear 
separation of the two subspecies (L. v. vulgaris [South Lineage] and 
L. v. ampelensis) towards the tributaries of the Danube to the tribu-
taries of the Tisza, with an admixture of lineages through the inter-
fluves of the rivers. Second, according to the fine-scale scenario, the 
Transdanubian populations of L. v. vulgaris were clustering into four 
different genetic clusters; in contrast, L. v. ampelensis populations re-
mained to be represented by a single cluster with some admixture 
from the closest cluster of the South L. v. vulgaris Lineage (Figure 3c). 
Thus, the admixed populations of the two subspecies in the inter-
fluves have promoted the existence of a secondary contact zone for 
Central European smooth newt lineages in the CB. The presence of 
the four different L. v. vulgaris clusters (Lvv1–Lvv4) adds L. vulgaris 
to the list of amphibian species where pronounced genetic diver-
sity is present within the CB. The genetic distance between the four 
clusters shows that cluster Lvv1 might represent the most distantly 
related one and that clusters Lvv2–Lvv4 might have differentiated 
approximately at the same time, being now separated by rivers and 
lakes (Figures 2 and 5).

Smooth newt populations reached the highest genetic diver-
sity in the Balkans (Pabijan et al., 2015), which served as a refugium 
for the species during the last ice age (Babik et al.,  2005; Pabijan 
et al.,  2015). In the CB, our study found a high level of variation 
with the greatest genetic diversity observed in the North Hungarian 

Mountains and the southern edges of the country along the Drava, 
Danube and Tisza rivers as well as at the confluence of the Sava, 
Danube and Tisza. While admixture is not pronounced in the North 
Hungarian Mountains, it cannot be ruled out that high genetic 
variation at the confluence of the three rivers is due to increased 
admixture. Similarly, significant structuring of the fire salamander, 
Salamandra salamandra populations has been described from the 
North Hungarian Mountains, which are situated at the edge of the 
Carpathians and which might have provided glacial refugia for the 
fire salamander populations (Vörös et al., 2017). The confluence of 
the Sava, Danube and Tisza rivers contributed to the highest diver-
sity for the Danube crested newt, Triturus dobrogicus, populations 
also supporting the presence of glacial refugia (Vörös et al., 2016). 
The coincidences with the genetic pattern of L. vulgaris found in this 
study (i.e. high genetic diversity in the North Hungarian Mountains 
as well as at the confluence of the Sava, Danube and Tisza rivers) 
suggest that one or multiple northerly refugia in the CB cannot be 
ruled out for the smooth newt as well.

4.2  |  Effects of landscape elements (i.e. rivers) 
on the population structure of L. vulgaris

It was a long-standing belief that smooth newts have a limited dis-
persal ability between 50 and 182 m (Bell,  1977; Dolmen,  1981); 
however, recent studies suggested greater dispersal distance of 
up to 2 km for individuals (Schmidt et al., 2006; Tóth et al., 2021). 
Moreover, females usually return to their natal pond to reproduce 
(Bell,  1977). Therefore, the limited dispersal abilities on land, the 
high fidelity towards breeding habitats and, most importantly, the 
avoidance of habitats associated with flowing water (Lõhmus & Lin-
namägi, 2012) could restrict the dispersion of smooth newt lineages.

Our findings on population structure suggest an underlying bar-
rier effect of one of the large rivers behind the observed pattern of 
population structure of smooth newt lineages in the CB. The river 
Tisza stands as a barrier to L. v. ampelensis to disperse towards the 
West and to the South L. v. vulgaris Lineage towards the East. The 
four South L. v. vulgaris Lineage clusters distributed in the south-
ern Transdanubia (Lvv1), the northern Transdanubia (Lvv2) and 
the Danube–Tisza Interfluve (Lvv3 and Lvv4) show that landscape 
features—such as the river Danube or the Lake Balaton—might shape 
also the population structure within L. v. vulgaris in the CB. The in-
terfluve of the rivers (i.e. from the Great Plains of Hungary towards 
northern Serbia) serves as a contact zone for lineages, which was 
confirmed by the presence of admixed populations in the area. This 
population structure is corresponding to the distributional pattern 
of the Danube crested newts that showed a weak but significant 
genetic structure between tributaries of the three main river sys-
tems of Danube, Sava, and Tisza in the CB (Vörös & Arntzen, 2010). 
Nevertheless, the Danube crested newts are also present in rivers 
and their associated oxbows (Arntzen, Kuzmin, Jehle, et al., 2009); 
therefore rivers, especially under flooding conditions may not be as 

TA B L E  1 Pairwise Fst values for two (A), four (B) and five (C) 
genetic clusters defined by ADMIXTURE (Alexander et al., 2009).

A Lvv1 Lva

Lvv1 -

Lva 0.266 -

B Lvv1 Lvv2 Lvv3 Lva

Lvv1 -

Lvv2 0.133 -

Lvv3 0.140 0.103 -

Lva 0.266 0.311 0.285 -

C Lvv1 Lvv2 Lvv3 Lvv4 Lva

Lvv1 -

Lvv2 0.131 -

Lvv3 0.157 0.137 -

Lvv4 0.154 0.100 0.099 -

Lva 0.266 0.310 0.308 0.282 -

Abbreviations: Lva, Lissotriton vulgaris ampelensis lineage; Lvv1–Lvv4, 
Clusters 1–4 of the South L. v. vulgaris Lineage.
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strict barriers for dispersal, and thereby for genetic structuring as 
presumably did in smooth newts.

5  |  CONCLUDING REMARKS

European newts from L. vulgaris sensu lato were proposed to form 
a speciation continuum, influenced by the most extensive genetic 
exchange among lineages inhabiting Central Europe. Gene flow be-
tween the two morphologically cryptic North L. v. vulgaris and South 
L. v. vulgaris Lineages and the neighbouring L. v. ampelensis were ob-
served East and South of the CB, but population structure and line-
age diversification within this biogeographically key region were not 
explored before. With the help of genomic data, we extended our 
knowledge on gene flow between the South L. v. vulgaris Lineage and 
L. v. ampelensis, confirming a ca. 400 km long contact zone along the 
river Tisza and in the interfluves of the Danube and Tisza rivers in 
Central Europe. Moreover, we identified the river Tisza as an impor-
tant geographical barrier limiting gene flow between the lineages. 

F I G U R E  4 Heat map of expected heterozygosity visualizing genetic diversity among Lissotriton vulgaris populations in the Carpathian 
Basin.

0.18

0.04

Expected
heterozygosity

F I G U R E  5 Unrooted genetic distance tree featuring 
relationships among Lissotriton vulgaris ampelensis (Lva) and 
L. v. vulgaris (Lvv1–Lvv4) clusters.

Lva

Lvv1

Lvv2

Lvv4

Lvv3

0.020
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The L. v. vulgaris showed a complex population genetic pattern in the 
CB that led us to hypothesize one or more Pleistocene refugia for 
the species.
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