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Abstract
1.	 High‐quality information on predator–prey relationships is fundamental in under-
standing food webs, community assembly and ecosystem functioning. Recent ana-
lytical advances have made it possible to develop new trait‐based approaches to 
study trophic relationships and evaluate trait matching between predators and prey.

2.	 Here, we develop a novel analytical approach based on generalized linear mixed‐
effects models (GLMM) to test the importance of prey availability and to identify 
the set of prey traits that best explain the occurrence and number of prey in the 
predator's diet.

3.	 We demonstrate that the approach by using an extensive dataset on prey availabil-
ity, prey traits and gut content collected in all known populations of Vipera graeca, 
a little‐known, endangered snake of alpine grasslands in the Pindos Mountains of 
the Balkan Peninsula.

4.	 We show that V. graeca is a unique, venomous snake specialized on bush‐crickets 
and grasshoppers (Orthoptera). Prey selection GLMMs showed that the ideal prey 
of V. graeca is abundant, large‐bodied, has poor escape abilities (flightless, slow‐
moving and bad jumper) and prefers loose grasslands (as opposed to bare ground/
rock or closed sward). Vipers restrict their feeding to periods of high Orthoptera 
abundance in the late summer and need to reach a certain body size to become 
able to catch large‐sized prey.

5.	 Our analytical approach provides a framework for trait matching between preda-
tors and prey and unprecedented fine‐scale information on the importance of 
prey traits in prey selection by a specialist predator. The narrow trophic niche of 
V. graeca likely increases the vulnerability of this cold‐adapted snake to extinction.
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1  | INTRODUC TION

Understanding predator–prey relationships is fundamental in several 
areas of ecology such as trophic networks (Christensen et al., 2014), 
community assembly and organization (Lavorel et al., 2013; Van der 
Putten, Macel, & Visser, 2010), ecosystem functioning and stabil-
ity (Gravel, Albouy, & Thuiller, 2016), evolutionary biology (Yoshida 
et al., 2007) and conservation (Tylianakis, Laliberté, Nielsen, & 
Bascompte, 2010). Predator–prey relationships traditionally have 
been interpreted purely based on taxonomy, that is, which species 
consumes which species. However, the recent surge of interest and 
advances in trait‐based functional approaches in a variety of fields 
require a shift of interest to a better understanding of the functional 
links between predator traits and prey traits (Weigel & Bonsdorff, 
2018). Such trait matching (Brousseau, Gravel, & Handa, 2017) has 
at least three benefits. First, it helps to better predict species in-
teractions which are prohibitively difficult to observe in nature. 
Second, a deeper knowledge of such functional links contributes to 
niche theory as it helps our understanding of specialization based 
on the predators’ morphological and behavioural traits. Finally, un-
derstanding predator trait–prey trait relationships will enable us to 
better predict community‐level changes in trophic relationships due 
to climate change (Brousseau et al., 2017).

Although prey trait analysis has been around for a while (e.g. 
Sánchez‐Hernández, Servia, Vieira‐Lanero, & Cobo, 2013), this ap-
proach mainly concentrated on body size or mass, which has long 
been known as fundamental in predator–prey interactions (Brose, 
2010; Brose et al., 2005; Gravel, Poisot, Albouy, Velez, & Mouillot, 
2013). A refocusing of interest, however, will need to extend to 
functional traits beyond body size/mass such as those related to 
defence against predators (Eitzinger, Rall, Traugott, & Scheu, 2018). 
This approach has already been pursued in several empirical studies 
in aquatic ecosystems (copepods: Kalinoski & DeLong, 2016; fishes: 
Sánchez‐Hernández & Cobo, 2015; fish‐zoobenthos: Worischka, 
Schmidt, Hellmann, & Winkelmann, 2015; Weigel & Bonsdorff, 
2018). In terrestrial ecosystems, Brousseau et al. (2017) explored 
trait matching in a feeding experiment with ground beetles and their 
prey. Morphological trait matching between resource and consumer 
species has also been recently applied to study functional relation-
ships between plants with fleshy fruits and frugivorous birds (Bender 
et al., 2018). For such trait‐based approaches, fine‐scale information 
on trait relationships between predators and prey is necessary that 
help us to understand which predator traits are associated with 
which prey traits and whether and how trait–trait relationships vary 
in strength. Such fine‐scale information is now possible to obtain as 
there is an increasing number and depth of (a) databases on predator 
and prey traits (e.g. Brose et al., 2005), (b) methods in diet tracing 

(Nielsen, Clare, Hayden, Brett, & Kratina, 2018) and (c) analytical 
tools such as multivariate generalized linear mixed‐effect models 
that allow the analysis of non‐normally distributed, overdispersed 
data on prey abundances that are typical in studies of diet or gut 
content (Wang, Naumann, Wright, & Warton, 2012).

Specialist predators offer an important starting point for de-
veloping trait‐based approaches because trait matching is proba-
bly simpler when traits on either side of the relationship vary little. 
Snakes (suborder Serpentes) are exclusively predatory reptiles that 
show great variation in prey specialization (Thomas & Pough, 1979). 
A likely key innovation in the evolution of the Macrostomatan lin-
eage of snakes is their increased gape, which allows them to feed 
on large prey, in contrast to lizards and basal snakes (Vincent, Dang, 
Herrel, & Kley, 2006). Consequently, head size is expected to cor-
relate strongly with prey body size (Glaudas et al., 2019). Snakes rep-
resent a significant proportion of total biomass and are fundamental 
both as predators and as prey in many ecosystems, yet are often 
underrepresented in studies of trophic ecology (Luiselli, 2008). The 
foraging mode of snakes ranges from ambush predatory to active 
searcher strategies (Glaudas et al., 2019; Luiselli, 2006;  Schwenk, 
2000) and several snakes inject toxins to paralyse and kill prey and 
to assist digestion. Most snakes consume vertebrates, although 
there are extreme cases of specialization on other prey such as fish 
eggs (Voris, 1966). Snake diet often varies by season and age, with 
juveniles and adults preferring prey of different sizes (Brito, 2004; 
Greene, 1983; Luiselli, 1996; Shine, 1994). For example, juveniles 
often consume invertebrates, while adults in most species prefer 
vertebrates. Specialization on terrestrial arthropods has been re-
ported in only 1.5% of the ca. 3,700 snake species (Table 1). Usually, 
the main arthropod prey is only known to order level and little is 
known about finer‐scale specialization (Table 1). More generally, we 
know little on whether and how traits other than body size influence 
prey selection in snakes or other predators.

The aim of this study was to explore predator–prey relationships 
at the trait level by evaluating the importance of predator traits and 
prey traits in prey selection. We developed a novel analytical frame-
work based on generalized linear mixed‐effects models to test the 
importance of prey availability and prey traits in explaining the oc-
currence and number of prey in the predator's diet. We demonstrate 
the approach by using detailed natural history‐based field data from 
a predator–prey system involving Vipera graeca, a rare snake spe-
cies as predator and bush‐crickets and grasshoppers (Orthoptera) as 
prey in alpine meadows of the Balkan Peninsula in Southeast Europe. 
We used an extensive, fine‐scale dataset assembled from gut con-
tent sampling in all known predator populations, from sampling of 
prey availability in all study sites and from detailed laboratory mea-
surements of prey traits. We specifically addressed four questions: 

K E Y W O R D S
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TA B L E  1  List of snake species known to consume terrestrial arthropods and proportion and taxonomic identity (to the lowest level 
reported) of arthropods in their diet. Species with diets in which the proportion of arthropods exceeds 95% are highlighted in bold

Family Species
Number of prey 
items

Arthropod % 
of Diet Main arthropod prey References

Anomalepididae Liotyphlops ternetzii a a Isoptera Franca, Mesquita, Nogueira, and Araújo 
(2008)

Colubridae Gyalopion canum 34 100.0 Araneae Parga (2018)

Opheodrys a. aestivus 14 100.0 Lepidoptera larvae Baldwin (2007)

Opheodrys aestivus a 100.0 Orthoptera Thomas (2014)

Opheodrys vernalis 21 100.0 Lepidoptera larvae Baldwin (2007)

Symphimus mayae 84 100.0 Orthoptera Stafford (2005)

Tantilla coronata 222 100.0 Chilopoda Todd, Willson, Winne, Semlitsch and 
Gibbons (2008)

Tantilla hobartsmithi 19 100.0 Araneae Parga (2018)

Tantilla melanocephala 129 100.0 Chilopoda Marques and Puorto (1998)

Sonora semiannulata 49 97.9 Araneae Parga (2018)

Eirenis modestus 41 97.6 Coleoptera Cicek and Mermer (2007)

Opheodrys aestivus 443 97.5 Lepidoptera larvae Plummer (1981)

Tantilla nigriceps 23 95.6 Araneae Parga (2018)

Coluber constrictor 
mormon

267 91.4 Orthoptera Shewchuk and Austin (2001)

Tantilla gracilis 152 85.5 ‘Larvaes’ Cobb (2004)

Coluber constrictor 96 60.0 Orthoptera Thomas (2014)

Coronella girondica 65 26.2 Chilopoda Luiselli, Pleguezuelos, Capula, and 
Villafranca (2001)

Natriciteres variegata 35 17.1 ‘Arthopods’ Akani and Luiselli (1999)

Thelotornis capensi 56 8.9 ‘Insect remains’ Shine, Harlow, Branch and Webb (1996)

Hierophis viridiflavus 52 7.7 Orthoptera Rugiero and Luiselli (1995)

Natriciteres fuliginoides 28 7.1 Chilopoda/
Arachnida (1–1)

Akani and Luiselli (1999)

Philodryas patagoniensis 92 4.3 Orthoptera Soledad López and Giraudo (2008)

Heterodon simus 27 3.7 Hemiptera Beane, Graham, Thorp, and Pusser (2014)

Psammophis phillipsii 174 1.7 Mantodea Luiselli et al. (2004)

Dendrelaphis punctulata 75 1.3 Gryllidae Shine (1991)

Coluber constrictor foxii a a ‘Invertebrates’ Lennon (2013)

Eirenis coronella 5 a Araneae Shwayat, Disi, and Amr (2009)

Eirenis decemlineata 6 a Orthoptera Shwayat et al. (2009)

Eirenis lineomaculata 1 a Araneae Shwayat et al. (2009)

Eirenis rothi 2 a Chilopoda Shwayat et al. (2009)

Oligodon cinereus a a Orthoptera Meggitt (1931)

Dipsadidae Pseudablabes agassizii 25 96.0 Araneae Marques, Sawaya, Stender-Oliveira, and 
Franca (2006)

Elapidae Drysdalia coronoides 32 3.1 Cicadoidea Shine (1981)

Echiopsis curta 54 1.9 Blattodea Shine (1982)

Lamprophiidae Psammophis schokari 29 6.9 Coleoptera Cottone and Bauer (2009)

Psammophis phillipsi 120 1.7 Mantodea Akani, Eniang, Ekpo, Angelici, and Luiselli 
(2003)

Leptotyphlopidae Leptotyphlops fuliginosus a a ‘Insectivor’ Franca et al. (2008)

(Continues)
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(a) Are there temporal differences in feeding activity throughout the 
annual cycle? (b) Are there spatial differences in prey selection be-
tween populations inhabiting different mountain ranges? (c) Which 
prey traits influence prey selection? and (d) Do predator traits play a 
role in prey selection? We hypothesized temporal patterns in feed-
ing activity because snakes are known to time their feeding activity 
to periods when their prey becomes abundant (Šukalo et al., 2014). 
Spatial patterns were analysed to explore differences in prey spe-
cies composition in the diet between predator populations and to 
identify which prey species explain these differences. We addressed 
question 3 by testing the hypothesis that prey selection will be re-
lated to prey availability and/or prey traits such as the ability of prey 
to escape from predation. Finally, we hypothesized that prey size se-
lection is constrained by predator morphological traits such as body 
length or gape size.

2  | MATERIAL S AND METHODS

2.1 | Study species

The Greek Meadow Viper, Vipera graeca (Nilson & Andrén, 1988), is a 
poorly known cold‐adapted snake living in alpine meadows between 
1,600 and 2,200 m above sea level in the Pindos mountain range 
in Albania and Greece (Mizsei et al., 2016). Originally described as 
a subspecies, molecular studies confirmed the lineage as basal to 
the entire complex (Ferchaud et al., 2012; Nilson & Andrén, 2001) 
and was subsequently elevated to species level (Mizsei, Jablonski, 
Roussos, et al., 2017a). Vipera graeca is listed as endangered in the 
IUCN Red List due to its small and severely fragmented distribution, 
ongoing habitat degradation (mostly by overgrazing), mortality from 
intentional killing by shepherds and vulnerability to climate change 

Family Species
Number of prey 
items

Arthropod % 
of Diet Main arthropod prey References

Viperidae   Vipera graeca 356 100.0 Orthoptera this study

Vipera ursinii ursinii 626 99.7 Orthoptera Baron (1992)

Vipera renardi a 98.2 Orthoptera Kovalyenko (1952)

Vipera renardi 423 91.2 Orthoptera Fomina (1965)

Vipera ursinii ursinii 104 88.5 Orthoptera Agrimi and Luiselli (1992)

Echis carinatus 17 64.7 Scorpiones Barlow, Pook, Harrison, and 
Wüster(2009)

Echis pyramidum 60 56.7 Scorpiones Barlow et al. (2009)

Echis ocellatus 35 42.9 Chilopoda Barlow et al. (2009)

Agkistrodon contortrix 101 34.6 Lepidoptera larvae Garton and Dimmick (1969)

Macrovipera schweizeri 12 33.3 Coleoptera Adamopoulou, Valakos and Anastasios 
(1997)

Sistrurus miliarius 20 20.0 Centipedes Hamilton and Pollack (1955)

Agkistrodon piscivorus 81 14.8 Coleoptera Vincent, Herrel and Irschick (2004)

Bothrops neuwiedi 
pauloensis

69 14.5 Chilopoda Valdujo, Nogueria and Tartins (2002)

Echis coloratus 40 7.5 Scorpiones Barlow et al. (2009)

Crotalus enyo 63 6.3 Scolopendridae Taylor Emily (2001)

Vipera ammodytes 64 6.3 ‘Insects’ Dilian and Raichev (2009)

Vipera latastei 179 4.5 Scolopendridae Santos et al. (2007)

Bothrops pubescens 80 2.5 Chilopoda Hartmann, Hartmann, Cechin, and 
Martins (2005)

Trimeresurus stejnegeri 105 1.9 Orthoptera Creer, Chou, Malhotra and Thorpe (2002)

Calloselasma rhodostoma 177 1.7 ‘Arthopods’ Daltry, Wolfgang and Thorpe (1998)

Bothrops moojeni 144 0.7 Chilopoda Nogueira, Sawaya and Martins (2003)

Cerrophidion tzotzilorum a a ‘Arthopods’ Jadin (2007)

Gloydius rubromaculatus a a Noctuidae Shi et al. (2017)

Vipera anatolica ​
anatolica

4 a Orthoptera Zinenko et al. (2016)

Vipera anatolica senliki a a Chilopoda, 
Diplopoda

Göçmen, Mebert, Karış, Oğuz and 
Ursenbacher(2017)

aNumber of prey item and/or % arthopod prey in diet not reported. 

TA B L E  1   (Continued)
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(Mizsei, Szabolcs, Dimaki, Roussos, & Ioannidis, 2018; Mizsei, 
Szabolcs, et al., 2019).

2.2 | Study area and faecal sample collection

We characterized the diet of V.  graeca by visual analysis of faecal 
samples collected from individuals in all known populations of the 
species in Albania and Greece between 2013 and 2018 (Figure 1). 
Although new techniques for diet tracing (stable isotopes, fatty acid 
analysis and DNS‐based methods) have advanced considerably re-
cently, visual analysis has several advantages such as the simplicity 
of sample collection, storage and processing, and the possibility of 
obtaining information on the species identity, life stage, age or sex of 
prey and the number and relative abundance of prey consumed, thus 
still widely used in trophic studies and monitoring programs (Nielsen 
et al., 2018). In each population, we intensively searched for snakes 
(total sampling effort c. 5,700 person‐days) during the vipers’ active 
season ranging from April to September (Mizsei et al., 2016). The 
captured individuals were kept in separate textile bags for 2–4 days 
(min. 1 day, max. 5 days) to allow them to produce faecal samples. 
Most of the captured individuals, however, defecated while we 
were handling them to measure body size variables (e.g. snout‐vent 
length, head width and photography for scale counts). Before re-
leasing the snakes, we carefully investigated individuals that did not 
defecate by abdominal palpation to confirm the absence of any gut 
content; these individuals were classified in the ‘empty gut’ group. 

After measurements, we released all individuals at the exact site of 
their capture. Faecal samples were stored in 96% ethanol.

2.3 | Prey availability and prey traits

We expected a diet dominated by Orthoptera (crickets, grasshoppers 
and locusts) for V. graeca, because its sister lineages in the V. ursinii‐
renardi complex are well known Orthoptera consumers (Baron, 1992; 
Filippi & Luiselli, 2004; Table 1). To characterize prey availability in 
the habitat of each study population, we sampled the Orthoptera 
community in all sites where vipers were captured. Sampling was 
conducted by standardized sweep‐netting in 5 × 5‐metre quadrats 
and was supplemented by manual collection for 15  min in each 
site. Orthoptera community samples were stored in 96% ethanol 
until processing. For identification, we used the keys of Harz (1969, 
1975), Ramme (1951), Willemse (1985) and Willemse, Helversen and 
Odé (2009) and the comparative material of the Hungarian Natural 
History Museum. To quantify prey availability, we calculated the rel-
ative abundance of specimens in three age‐sex groups: adult males, 
females and nymphs for each Orthoptera species.

We used the Orthoptera community reference material to 
measure prey traits relevant in predator–prey relationships. We 
photographed every Orthoptera specimen collected in the prey 
availability material from a lateral view, which is a likely view of 
the prey by the predator and which also allows the measurement 
of several important prey traits on the photographs, with a Nikon 

F I G U R E  1  Distribution of Vipera 
graeca and location of samples (a), 
example for habitats (b) and typical 
vegetation of habitat (c)
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D600 DSLR and a Micro‐Nikkor 55 mm f2.8 lens. To characterize 
prey body size, we measured the area of visible surface (AVS) on 
the photographs using the LeafArea package in r (Katabuchi, 2017) 
(accuracy ± 0.0001 mm2) for each individual and averaged them for 
each age/sex category of each species. To estimate the ability of 
Orthoptera specimens to escape from predator attack, we measured 
(a) total body length, (b) wing length, (c) femur length and (d) tibia 
length of the hind leg on the photographs and averaged the mea-
surements for each age/sex category of each species (Figure 2). We 
reduced these body size variables into four non‐correlating principal 
components and interpreted them based on their correlations with 
the original variables (Figure 2). We interpreted PC1 as ‘sluggishness’ 
because it was negatively correlated with all four body size variables 
related to escape behaviour and PC2 as ‘flightlessness’ as it nega-
tively correlated with wing length (Figure 2). Considering that longer 
legs allow longer jumps, whereas shorter legs allow quicker jumps in 
bush‐crickets (Burrows & Morris, 2003), we interpreted PC3 as ‘abil-
ity of long jumps’ because it positively correlated with tibia length 
and PC4 as ‘ability of quick jumps’ as it negatively correlated with 
femur length (Figure 2). We characterized the microhabitat pref-
erences of Orthoptera species by classifying them into categories 
based on Rácz (1998) and Stevaev & Nikitina (1976). This system con-
sists of three main types (chortobiont: species of closed swards that 
are influenced mainly by vegetation microclimate, geobiont: species 
of bare ground or rock surfaces influenced mainly by ground micro-
climate and thamnobiont: species of high dry, shrubby or woody 

vegetation) and four transitional types (chorto‐thamnobiont: species 
found both in closed swards and in high shrubby/woody vegetation; 
geo‐chortobiont: primarily ground‐dwelling species that also occur 
in vegetation; geo‐psammo‐chortobiont: primarily ground‐dwelling 
species specialized on sandy surfaces and thamno‐geobiont: primar-
ily vegetation‐dwelling species that also occur on bare ground or 
rock surfaces). Finally, to characterize body size of prey that can be 
swallowed by snakes (question 4), we also measured the maximum 
body diameter of Orthopterans and calculated averages for each 
age/sex category of each species.

2.4 | Faecal sample processing and identification

We processed the faecal samples under a stereomicroscope to find 
and identify all remains of potential prey specimens (Figure 3). Visual 
examination of the faecal samples allows the detection of bones and 
teeth of vertebrates, non‐digestable hair of mammals, feathers of 
birds, scales of reptiles, chitinised cuticles of arthropods and other 
body parts (e.g. earthworm bristles) and usually also allows species‐
level identification of prey items (e.g. Angelici, Luiselli, & Rugiero, 
1997, Shine, Harlow, Keogh, & Boeadi, 1998 and Pérez‐Mellado, 
Pérez‐Cembranos, Garrido, Luiselli, & Corti, 2011). We used the 
Orthoptera community samples as a reference in the identification 
of partly digested gut content material to the lowest taxonomic level 
possible, following the methodology described by Luiselli and Amori 
(2016). We counted the number of prey by species in each faecal 

F I G U R E  2  Measured traits, biplots 
of trait principal components and their 
explained variance
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sample, and if the condition of the digested prey allowed, we deter-
mined the age (nymph/adult) and sex of the prey specimens.

2.5 | Dataset and statistical analyses

We evaluated the temporal pattern in feeding activity throughout 
the annual cycle (question 1) by building Generalized Linear Mixed 
Models (glmm) with binomial error distribution using the lme4 pack-
age (Bates, Mächler, Bolker, & Walker 2014) in R. The binary depend-
ent variable was presence/absence of any gut content of a viper 
individual, while the fixed factors were Julian date (number of days 
after Jan 1 in each year), sex and snout‐vent length of vipers, and 
sampling site was a random factor to control for the spatial noninde-
pendence of the observations.

To assess spatial differences in prey selection (species compo-
sition of the diet) between populations (question 2), we prepared 
a dataset of abundances of Orthoptera species in the diet, with 
abundance pooled across ages and sexes by species. We analysed 
differences in species composition of the diet between viper pop-
ulations by fitting Bayesian Ordination and Regression Analysis 
(boral) models using the boral package in r with default parameters 
for controlling the Markov chain Monte Carlo sampling (Hui, 2016, 
2018). To find species explaining differences among populations in 
species composition of the diet, we used Generalized Linear Models 
for Multivariate Abundance Data (manyglm) models with negative 
binomial error distribution and a log link, with unknown overdisper-
sion parameter, using the mvabund package in r (Wang et al., 2012). 
Species for which deviance estimated by the manyglm was signifi-
cant were inferred to cause the differences in species composition 
of the diet between the populations.

To analyse how prey traits influence prey selection by the viper 
(question 3), we first prepared a dataset as follows: (a) we listed 

Orthoptera species separately for each viper population, (b) then, we 
added age/sex information to each Orthoptera species as was found in 
the reference material; (c) then, we joined each viper individual studied 
to each of the age/sex categories of Orthopterans, (d) added presence/
absence information (0 or 1, respectively) to each line based on whether 
the Orthopteran age/sex category was found in the faecal samples or 
not, (e) added the abundance information to each Orthopteran age/sex 
category based on the number of specimens found in faecal samples of 
each viper individual and finally, (f) joined the traits of the Orthopteran 
species and the viper predators to each observation. Prey traits in-
cluded the relative abundance of species in the Orthoptera commu-
nity reference material, mean AVS, trait principal components PC1‐4 
and microhabitat preference. Predator traits included sex, snout‐vent 
length, head width and Julian date of sampling.

We analysed how prey traits influence prey selection by build-
ing two similar models, a glmm for the presence/absence of prey in 
the diet and a manyglm for the abundance of prey in the diet. In the 
glmm, presence/absence of prey in the diet was the binary dependent 
variable, and prey traits were fixed explanatory variables, while the 
identity of vipers was a random factor to control for the nonindepen-
dence of observations of different prey items from the same viper 
individual. We fit the glmm with binomial error distribution using 
the lme4 package (Bates et al., 2014). After fitting the glmm, we cal-
culated the relative importance of explanatory variables in a model 
selection approach to identify models with substantial empirical sup-
port based on Akaike differences (Δi = AICi = AICmin <2.0) in an in-
formation‐theoretic framework (Burnham & Anderson, 2002) using 
the MuMIn package in r (Bartoń, 2018). In the manyglm, we specified 
negative binomial error distribution and a log link function with an un-
known overdispersion parameter. The abundance of prey in the diet 
was the continuous dependent variable, and prey traits were fixed 
explanatory variables. We used the mvabund package for manyglm 

F I G U R E  3  Temporal pattern of feeding 
activity of V. graeca per month with the 
number of examined individuals above 
the bars (a), effort‐corrected relative 
abundance of individuals per month with 
temporal sampling effort in person‐days 
(b), monthly mean (± SD) temperatures 
at meteorological stations nearest to the 
study sites (<25 km) in the study years 
(2010–2018) from the Global Surface 
Summary of the Day database (Sparks, 
Hengl, & Nelson, 2017) (c), examples for 
faeces (d) and prey remains found in a 
faecal sample (e)
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and applied the ANOVA.manyglm function to compute an analysis of 
deviance table for the manyglm models (Wang et al., 2012).

Finally, we tested the influence of predator traits (question 4) 
by using a piecewise regression to assess the relationship between 
body size variables (snout‐vent length, body mass and vipers’ head 
width) as independent variables and prey body diameter as depen-
dent variable. We used changepoint estimation and fitted nonlinear 
least squares to visualize the relationship using the colf (Boutaris, 
2017) and splines2 (Wang & Yan, 2018) packages in r. All statistics 
and figures were produced in r 3.5 (R Core Team, 2018).

3  | RESULTS

We captured 290 individuals of Vipera graeca and collected faecal 
samples from 78 individuals (21 juveniles, 15 males and 42 females) 
in 14 of the known 16 populations. The remaining 212 individuals 
(73%) had empty guts (41 juveniles, 66 males and 105 females). We 
found a temporal pattern in feeding activity because the proportion 
of individuals that had food in their stomach increased from June, 
peaked in July at 56% and decreased afterwards (Figure 3; glmm‐1: 
Z = 3.054, p = .002).

We detected 356 prey items in the faecal samples, of which 
96.3% was Orthoptera, 3.1% Araneae (Drassodes sp., Gnaphosidae; 
Alopecosa sp., Lycosidae, Thanatus coloradensis, Philodromidae), 
and we found one specimen of Coleoptera (Otiorhynchus sp., 
Curculionidae; 0.3%) and Scorpiones (Euscorpius sp.; 0.3%). No ver-
tebrate prey was found in the samples. In the Orthoptera community 
reference material, we collected 1,190 specimens of 55 species as 
potential Orthoptera prey. With the aid of the reference material, we 
were able to identify 35 Orthoptera species from the faecal samples.

Viper diet was dominated by Orthoptera in all study populations; 
however, species composition in the diet differed between sampling 
sites (Figure 4). The manyglm‐based deviance analysis showed that dif-
ferences in the diet between populations were explained by the pres-
ence of Psorodonotus macedonicus (dev = 39.370, p = .001), Chorthippus 

willemsei (dev  =  34.869, p  =  .001), Modestana ebneri (dev  =  33.917, 
p = .002), Peripodisma llofizi (dev = 31.364, p = .003), Decticus verruciv‐
orus (dev = 26.093, p = .011), Parnassiana coracis (dev = 25.787, p = .016) 
and Stenobothrus rubicundulus (dev  =  23.859, p  =  .031). In general, 
these species were more frequent in the vipers’ diet, whereas eight 
other species (mostly Chorthippus spp.) were less frequent than could 
be expected based on their frequency in the Orthopteran community 
reference material (Figure 5). The two largest sized bush‐cricket spe-
cies (Decticus verrucivorus and Psorodonotus macedonicus) were more 
common in faecal samples than in the reference material, whereas the 
three most abundant species (all small‐bodied: Euchorthippus declivus, 
Chorthippus mollis and unidentified Chorthippus nymphs) were almost 
missing from the diet of V. graeca (Figure 5).

The GLMM model selection on the presence/absence of prey in 
the diet found no better model than the full model, in which all ex-
planatory variables had significant effects (Table 2, glmm). A similar 
model on the abundance of prey in the diet showed similar results 
(Table 2, manyglm). In both models, body size (AVS), ‘sluggishness’ 
and ‘flightlessness’ positively affected prey selection, while ‘ability 
of quick jumps’ and the ‘geo‐chortobiont’ and ‘geobiont’, indicat-
ing a microhabitat preference for bare ground and rock surfaces, 
negatively affected prey selection. Prey availability had significant 
positive effects, whereas ‘ability of quick jumps’ and ‘geo‐psammo‐
chortobiont’ microhabitat preference had a significant negative 
effect on the presence of prey in the diet. There was a positive cor-
relation between values predicted by the presence/absence‐based 
and the abundance‐based models for each age/sex category of each 
species (Figure 6a). This analysis confirmed a set of preferred spe-
cies that was similar to that found by the deviance‐based manyglm 
analysis (Figure 6a; Parnassiana coracis, Psorodonotus macedonicus, 
Stenobothrus rubicundulus, Chorthippus willemsei and Modestana eb‐
neri). When we averaged these predicted values across viper pop-
ulations, the Vardoussia population emerged as richest in preferred 
viper prey availability, followed by Lakmos and Trebeshin and the rest 
of all were at the lower end of the preference spectrum (Figure 6b).

The body size distribution of Orthoptera prey items was bimodal 
(Figure 7) with two main size categories: (a) small‐ and average‐sized 
grasshoppers (e.g. Omocestus haemorrhoidalis, Chorthippus spp.) 
and small bush‐crickets (e.g. Modestana ebneri, Platycleis sp.) with a 
mean ± SE body diameter of 5.5 ± 0.15 mm and (b) large bush‐crick-
ets (e.g. Decticus verrucivorus and Psorodonotus macedonicus) with a 
mean ± SE body diameter of 13.0 ± 0.75 mm. We found a nonlinear 
positive relationship between vipers’ head width and body diameter 
of their Orthopteran prey (Figure 7), indicating that vipers become 
able to prey on larger prey when they reach 10.5 mm in head width 
(p < .001). We found no other sign of ontogenetic shift in the diet as 
V. graeca preys on Orthopterans at all ages (results not shown).

4  | DISCUSSION

The main novelty of this study is that it provides evidence that prey 
traits can be used to predict prey selection in a specialist predator 

F I G U R E  4  Bayesian ordination of viper diet samples, estimated 
centroids and confidence intervals (95%) of the studied populations

−0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

Latent variable 1

La
te

nt
 v

ar
ia

bl
e 

2

Vardoussia

Avgo

Lakmos

Dhëmbel

Kulmak

Nemërçka
Trebeshin

Lunxheri

Tomorr



     |  9Functional EcologyMIZSEI et al.

(question 3). Beyond body size, several prey traits, related to the 
ability to escape from predators (sluggishness, flightlessness and 
ability for long/quick jumps) as well as prey microhabitat preference, 
were found to influence the presence/absence and number of prey 
in the predator's diet. To our knowledge, this is the first field‐based 
empirical evidence of trait matching between prey and predators in 
a terrestrial predator–prey system. Our results show that the optimal 
prey of V. graeca is abundant, large‐bodied, has poor escape abili-
ties (slow‐moving, flightless, bad jumper) and prefers loose grass-
lands as opposed to bare ground/rock or dense closed sward. Our 
work provides evidence on trait matching involving traits other than 
body size. Such trait matching was first reported in an experimen-
tal feeding trial of 20 carabid beetles and 115 of their prey species 

(Brousseau et al., 2017), which found matching between predator 
bite force and prey cuticular toughness.

Our study is the first to present data on the diet of V.  graeca. 
This species is unique, as it is an obligate insectivorous snake spe-
cializing on Orthoptera bush‐crickets and grasshoppers in all known 
populations. The diet of other meadow vipers is also based on 
Orthoptera, but they also feed on lizards and rodents (Baron, 1992; 
Filippi & Luiselli, 2004; Starkov, Osipov, & Utkin, 2007). Although liz-
ards (Podarcis muralis, P. tauricus and Lacerta agilis) and rodents (e.g. 
Chionomys nivalis) are present in V. graeca habitats (Mizsei, Jablonski, 
Végvári, Lengyel, & Szabolcs, 2017b; Stolarik, Grula, & Jablonski, 
2017), the absence of vertebrate remains in faecal samples sug-
gests that V. graeca is a dietary specialist on terrestrial arthropods. 

F I G U R E  5  Relative abundance of prey 
species found in the diet of Vipera graeca 
and their availability in the habitat

Diet
Availability

Re
la

tiv
e 

ab
un

da
nc

e

0.00

0.05

0.10

0.15

0.20

0.25

St
en

ob
ot

hr
us

 ru
bi

cu
nd

ul
us

St
au

ro
de

us
 sc

al
ar

is
Ch

ro
th

ip
pu

s w
ill

em
se

i
Ps

or
od

on
ot

us
 m

ac
ed

on
icu

s
M

od
es

ta
na

 eb
ne

ri
Om

oc
es

tu
s h

ae
m

or
rh

oi
da

lis
 Pa

rn
as

sia
na

 sp
.

De
cti

cu
s v

er
ru

civ
or

us

Ch
or

th
ip

pu
s b

ig
ut

tu
lu

s
Ch

or
th

ip
pu

s p
ar

al
ell

u s
Ar

cy
pt

er
a m

icr
op

te
ra

St
en

ob
ot

hr
us

 lin
ea

tu
s

Pa
rn

as
sia

na
 co

ra
cis

Po
ec

ili
m

on
 sp

.
Ch

or
th

ip
pu

s m
ol

lis
Ch

or
th

ip
pu

s s
p.

Ph
ol

id
op

te
ra

 fe
m

or
at

a
Po

ec
ili

m
on

 or
na

ta
Ch

or
th

ip
pu

s b
or

nh
al

m
i

Eu
ch

or
th

ip
pu

s d
ec

liv
us

M
yr

m
ele

ot
et

tix
 m

ac
ul

at
us

Pl
at

yc
lei

s g
ris

ea
Eu

ph
ol

id
op

te
ra

 sc
hm

id
t i

Oe
di

po
da

 ge
rm

an
ica

Te
ss

ell
an

a o
rin

a
Ca

lli
pt

am
us

 it
al

icu
s

Ce
les

 va
ria

bi
lis

Ch
or

th
ip

pu
s a

pr
ica

riu
s

Ch
or

th
ip

pu
s d

or
sa

tu
s

Po
ec

ili
m

on
 jo

ni
cu

s

TA B L E  2  Parameter estimates of prey selection models. Significant parameter estimates are highlighted in bold letters

 

Presence‐absence of prey in diet (glmm) Abundance of prey in diet (manyglm)

Estimate SE Z p Estimate SE Z p

(Intercept) −12.931 1.601 −8.078 .000 −11.733 1.535 −7.644 .001

Availability 13.642 6.1 2.237 .025 7.275 5.791 1.256 .213

Area of visible surface 2.159 0.342 6.31 .000 1.924 0.323 5.951 .001

Trait PC

Sluggishness 3.705 0.751 4.932 .000 3.307 0.718 4.605 .002

Flightlessness 2.442 0.694 3.518 .000 2.083 0.658 3.165 .005

Ability of long jumps −10.214 2.692 −3.794 .000 −9.068 2.566 −3.534 .002

Ability of quick jumps −2.404 0.964 −2.493 .013 −1.829 0.928 −1.971 .053

Microhabitat preference

Chorto‐thamnobiont 0.098 0.731 0.134 .893 0.539 0.735 0.734 .455

Chortobiont −0.704 0.588 −1.197 .231 −0.093 0.601 −0.155 .862

Geo‐chortobiont −1.736 0.637 −2.725 .006 −1.488 0.649 −2.294 .017

Geo‐psammo‐chortobiont −1.38 0.653 −2.114 .034 −0.854 0.659 −1.296 .198

Geobiont −4.023 1.159 −3.471 .001 −4.016 1.185 −3.389 .001

Thamno‐geobiont −20.149 20,724.5 −0.001 .999 −11.676 188.9 −0.062 .950

Thamnobiont −0.512 0.885 −0.579 .563 −0.021 0.861 −0.024 .978
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We also found that (a) the feeding activity of V.  graeca is highly 
seasonal, with a peak in late summer, when Orthopterans are most 
abundant, (b) the species composition of the diet differed between 
the predator populations, mostly because several preferred prey 
species occurred only in a subset of the populations and (c) pred-
ator traits related to body size, such as head width, are important 
because they are directly related to the maximum gape width of the 
snake. Differences in diet composition among populations are likely 
explained by biogeographic differences in prey species composition 
among the populations. For example, Parnassiana coracis was found 
only on Vardoussia, whereas Psorodonotus macedonicus was found 
only on Avgo, Lakmos and Trebeshin mountains.

We found that feeding is almost or entirely paused for V. graeca 
during the spring months as individuals did not produce faeces under 
the same conditions as individuals did in the summer. Our results 
suggest that vipers start feeding in June, coinciding with the period 

when Orthopteran nymphs start to develop into adults. The ener-
getically profitable period for feeding is probably the second half 
of the summer (July and August), when large‐sized Orthopterans 
are abundant. A low proportion of individuals with food in their 
gut, for example 10%–50% of several hundred individuals, is not 
unusual among snakes (Šukalo et al., 2014). Studies which used the 
palpation‐regurgitation method to produce samples showed that the 
proportion of snakes containing food can vary considerably among 
seasons, with a low prevalence of food usually in spring (Brito, 2004) 
and that it also varies between populations in relation to food avail-
ability (Šukalo et al., 2014). Thus, we assume that when a snake did 
not produce faeces, it usually did not have food in its gut and that 
this reflects true dietary patterns.

Despite our results on diet and prey selection of V. graeca, still 
little is known on the foraging strategy of the species. Glaudas et 
al. (2019) found that ambush foragers feed on a wide range of prey 

F I G U R E  6  Predicted prey suitability 
values for each age/sex category of 
Orthoptera species (a) and averaged 
predictions (mean and SE) by Orthoptera 
species composition of the studied 
populations (b)
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F I G U R E  7  Prey body diameter as a 
function of viper head width; vertical 
dashed line indicates breakpoint of 
piecewise regression
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size, while active foragers tend to be more specialized in terms of 
prey size and determined the sister species V. ursinii as ambush for-
ager as well as other Vipera species. However, our results show that 
prey selection of V. graeca significantly differs from that expected 
based only on the abundance of potential prey species, suggesting 
that it follows a more active foraging strategy on the ambush‐ac-
tive foraging mode gradient. We have only one direct observation 
of a V.  graeca individual swallowing a locust relatively far from a 
typical hiding place; thus, we cannot confirm the exact foraging 
mode. Several personal observations (EM) of V.  ursinii rakosiensis 
that showed hunting behaviour in captivity suggest an active for-
aging strategy for that subspecies. The high frequency of large prey 
with poor jumping ability in the diet of V. graeca, however, suggests 
that its predatory strategy includes a strike attempt to reach the 
focal prey before the prey can jump away, similarly to the case of 
rattlesnakes and kangaroo rats (Higham, Clark, Collins, Whitford, & 
Freymiller, 2017).

Our results regarding the importance of predator traits in prey 
selection match those of several previous studies. Our finding that 
the area of visible surface of prey positively influenced prey selec-
tion suggests that V.  graeca prefers prey of larger size than what 
could be expected by chance. However, younger and smaller snakes 
are usually able to consume smaller prey only, and larger snakes 
consume large prey items, a pattern that appears general in snakes 
(Vincent et al., 2006). The positive nonlinear relationship between 
prey size and predator head width also shows that prey selection is 
constrained by the ability to swallow large prey (Shine et al., 1998). 
Baron (1992) also found that the smallest Orthoptera eaten by V. ur‐
sinii were 16 mm in total length, regardless of the size of the snake. 
Successful capture of prey larger than this probably requires larger 
gape size in snakes (King, 2002), which is supported by our finding 
that V. graeca has to reach a head size >10.5 mm to be able to swal-
low large bush‐crickets. However, our data also show that large in-
dividuals still consume smaller prey (e.g. Dugan & Hayes, 2012). It 
has to be noted that we cannot exclude the possibility that small/
juvenile insects or larvae, which have less chitinised cuticles than 
adult insects, are digested more thoroughly and are more difficult to 
detect in faecal samples (Pincheira‐Donoso, 2008).

Our study used several methodological advances that may be 
useful in future studies. We developed a prey trait database from 
actual measurements of traits using the reference material collected 
in the field (see Supplementary Material); thereby, we minimized the 
possibility of bias that might have resulted from using literature data 
on traits. We used a noninvasive method to collect faecal samples 
and no animal was harmed or killed during this project, whereas 
regurgitation induced by palpation sometimes causes mortality to 
snakes. Finally, our application of generalized linear mixed‐effects 
models to study the effects of prey availability and prey traits on 
prey selection led to biologically plausible relationships between 
prey traits and prey selection.

Beyond the significance of our results in feeding ecology, our 
findings also have conservation relevance. Snakes with dietary 
specialization are more prone to extinction than are generalists 

(Filippi & Luiselli, 2000; Reed & Shine, 2002). Understanding di-
etary specialization should thus be added to relevant life history 
traits to develop an evidence‐based, successful conservation man-
agement plan for this species. For example, populations whose 
habitat contains more of the preferred prey species (Figure 6) 
should enjoy higher conservation attention, while habitats with 
low quality in prey availability could be managed to enhance prey 
availability.

In conclusion, our study provides a novel analytical frame-
work for studying trait matching between predators and their 
prey, which can be applied relatively easily in other predator–prey 
systems. Our results also reveal unprecedented details in under-
standing feeding activity and prey selection in a previously little‐
known snake. Our analysis of factors influencing prey selection 
supported the importance of prey availability, body size and other 
traits related to defence/escape from predators and prey habitat 
preference. Our results imply that V. graeca tends to select prey 
that are large, cannot effectively escape and live in loose alpine 
grasslands. In addition, our study also showed that predator body 
size and, particularly, head width is fundamental in determining 
prey selection and those vipers need to reach a certain body size 
to become able to catch feed on large prey. The analytical frame-
work used here will hopefully serve as a model for future studies, 
and this study will thus contribute to the advancement of trait‐
based methods in functional and feeding ecology by improving our 
understanding of the matching of traits between predators and 
their prey.
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